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In 1996, the U.S. Congress passed two laws 
affecting the regulation of pesticides and 
other chemicals. Both of these laws, the Food 
Quality Protection Act of 1996 (FQPA 1996) 
and the Safe Drinking Water Act Amendments 
of 1996 (SDWA Amendments 1996), con-
tained provisions for assessing the potential 
for chemicals to interact with the endocrine 
system. The FQPA (1996) required the U.S. 
Environmental Protection Agency (EPA) to 

develop a screening program, using appropriate 
validated test systems and other scientifically rele-
vant information, to determine whether certain 
substances may have an effect in humans that is 
similar to an effect produced by a naturally occur-
ring estrogen, or such other endocrine effect as 
the Administrator may designate. 

Chemicals identified for testing under the 
two statutes include all pesticide chemicals 
(both active and inert ingredients in pesticide 
formulations), as well as any other substances 
that may have an effect that is cumulative 
with effects of a pesticide if the administra-
tor determines that a substantial population 
is exposed to such a substance. Furthermore, 
the SDWA Amendments (1996) state that 

In addition to the substances referred to in . . . the 
Federal Food, Drug, and Cosmetic Act (21 

U.S.C. 346a(p)(3)(B)) . . . , the Administrator 
may provide for testing under the screening pro-
gram authorized by [the FFDCA] . . . of any other 
substance that may be found in sources of drink-
ing water if the Administrator determines that a 
substantial population may be exposed to such 
substance. 

Based largely on recommendations from 
the Endocrine Disruptor Screening and 
Testing Advisory Committee (EDSTAC), a 
U.S. EPA advisory committee convened to 
recommend approaches to addressing the 
requirements of the FQPA (Gray 1998), the 
U.S. EPA’s Endocrine Disruptor Screening 
Program (EDSP) developed and validated 
assays to be used in a two-tiered screening 
approach whose initial focus is on the estro-
gen, androgen, and thyroid (E, A, and T) 
systems in mammals, along with select eco-
logical species. The Tier 1 battery assesses the 
potential of a chemical to interact with the 
endocrine system (specifically E, A, and T), 
and the Tier 2 assays are intended to iden-
tify possible effects within these systems. 
The Tier 1 battery consists of 11 assays: an 
estrogen receptor (ER) binding assay, an ER 
transactivation assay, an androgen receptor 
(AR) binding assay, an aromatase assay, a 

steroido genesis assay, a rat uterotrophic assay, 
a rat Hershberger assay, rat pubertal male and 
female assays, a frog metamorphosis assay, 
and a fish partial life cycle assay (U.S. EPA 
2009). The U.S. EPA has estimated the cost of 
conducting and reporting the tests in this first 
tier to be approximately half a million U.S. 
dollars (U.S. EPA 2007). Because of the lack 
of reliable high-throughput screening (HTS) 
methodologies available at the time, a deci-
sion was made to prioritize the initial list of 
67 chemicals to be screened using the Tier 1 
battery based solely on estimates of poten-
tial for human and environmental exposures 
(U.S. EPA 2009). However, the same docu-
ment also states that the U.S. “EPA antici-
pates that it may modify its chemical selection 
approach for subsequent screening lists” based 
upon considerations including “the availabil-
ity of new priority-setting tools (e.g., High 
Throughput Prescreening or Quantitative 
Structure Activity Relationships models).” 
Issuance of test orders for this Tier 1 screening 
began in 2009 (U.S. EPA 2010a). 

ToxCast is a large-scale experiment using 
a battery of in vitro HTS assays to develop 
activity signatures predicting the potential 
toxicity of environmental chemicals at a cost 
that is < 1% of that required for full-scale ani-
mal testing (Dix et al. 2007). Phase I included 
467 assays across nine technology platforms 
(Judson et al. 2010). Assays include both cell-
free (biochemical) and cell-based measures, 
largely using human cells or cell lines, and 
cover a wide spectrum of biological targets 
or effects, including cytotoxicity, cell growth, 
genotoxicity, enzymatic activity, receptor 
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Background: The prioritization of chemicals for toxicity testing is a primary goal of the U.S. 
Environmental Protection Agency (EPA) ToxCastTM program. Phase I of ToxCast used a bat-
tery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One 
important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine 
Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and envi-
ronmental contaminants for their potential to affect the endocrine systems of humans and wildlife. 

oBjective: The goal of this study was to develop a flexible method to facilitate the rational priori-
tization of chemicals for further evaluation and demonstrate its application as a candidate decision-
support tool for EDSP. 

Methods: Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine 
profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. 
Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as 
were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. 

results: Combining multiple data sources into an overall, weight-of-evidence Toxicological 
Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust con-
clusions than any single data source taken alone. 

conclusions: Incorporating data from in vitro assays, chemical descriptors, and biological path-
ways in this prioritization schema provided a flexible, comprehensive visualization and ranking 
of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent 
visuali za tion of the relative contribution of all information sources to an overall priority ranking. 
The method developed here is readily adaptable to diverse chemical prioritization tasks.
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binding, ion channels, transcription factor 
activity and downstream consequences, gene 
induction, and high-content imaging of cells. A 
major goal of ToxCast is to provide U.S. EPA 
regulatory programs with information help-
ful in prioritizing chemicals for more detailed 
toxicological evaluations. These detailed evalua-
tions may include non traditional, mechanism-
focused in vivo or in vitro tests. The rational 
prioritization of chemicals is anticipated to 
enable more efficient use of animal resources in 
toxicity testing.

Of particular relevance to the EDSP, 
roughly 15% of the ToxCast assays examine 
various aspects of the estrogen (six assays), 
androgen (five assays), and thyroid (five 
assays) signaling pathways, as well as a num-
ber of other nuclear receptor (NR) pathways 
(e.g., glucocorticoid receptor, peroxisome pro-
liferator–activated receptor, pregnane X recep-
tor; 36 assays) and xeno biotic-metabolizing 
enzymes (XMEs; cytochrome P450s, includ-
ing aromatase; 38 assays) that have poten-
tial rele vance to endocrine signaling. Because 
phase I of ToxCast capitalized on the richness 
of traditional toxicology information available 
for food-use pesticides (Knudsen et al. 2009; 
Martin et al. 2009a, 2009b), a large fraction 
(52 of 67) of the list of chemicals for initial 
EDSP Tier 1 testing were included in the 
HTS screening.

In this article, we describe the endocrine 
profiles for the entire ToxCast library of 309 
unique chemicals, with particular focus on 
those chemicals designated for the first round 
of EDSP screening. Importantly, we provide 
a flexible ranking system by which chemi-
cals may be prioritized for screening in the 
more expensive animal-based studies or other, 
lower-throughput testing methods. We define 
the Toxicological Priority Index (ToxPiTM) 
as a tool for objective chemical prioritization 
based upon formal integration across multiple 
domains of information. The ToxPi frame-
work provides a graphical system for analyzing 
complex toxicological data that was designed 
with several key features in mind: extensibility 
to incorporate additional types of data (e.g., 
measures of biotransformation, exposure, 
dosimetry); multivariate assessment of toxic-
ity relative to any set of chemicals; differen-
tial weighting factors for various information 
domains and data sources; transparency in 
score derivation and visualization; and flex-
ibility to customize components for diverse 
prioritization tasks. We assessed the validity 
of our prioritization system by exploring the 
distribution of well-characterized chemicals 
within the ToxPi rankings, inspecting profiles 
within structurally homogeneous chemical 
classes, and assessing sensitivity to spurious 
assay results. The results demonstrate that 
integrating data across partially redundant 
assays and multiple knowledge domains gives 

a robust priority rank across chemicals and 
suggest how this information can be com-
bined in a transparent manner to prioritize 
further testing.

Materials and Methods
Data sources. The data used to develop 
the prioritization profiles for the 309 
unique chemicals are housed in U.S. EPA’s 
ToxMiner database, an internal repository 
for assay data from ToxCast, and have been 
previously described in detail (Judson et al. 
2010). Briefly, data were gathered from 467 
assays using a variety of technologies, includ-
ing biochemical HTS (Judson et al. 2010) 
and cell-based HTS assays measuring direct 
molecular inter actions with specific protein 
targets (Inglese et al. 2007); high-content cell 
imaging assays measuring complex cellular 
pheno types (Giuliano et al. 2006); a multi-
plexed gene expression assay for XMEs and 
transporters in human primary hepato cytes 
(LeCluyse et al. 2005); and multi plexed tran-
scription factor reporter assays (Martin et al. 
2010; Romanov et al. 2008). For the present 
study, we used specific experience with the 
ToxCast assays in combination with expert 
knowledge to compartmentalize the data in 
a manner informative to assessing endocrine-
related activity. This resulted in a subset 
of 90 assays having putative endocrine rel-
evance, divided into five broad categories: 
AR, ER, thyroid receptor (TR), XME/ADME 
(absorption, distribution, metabolism, and 
excretion), and other NRs [for a categorized 
listing of and additional details on all assays, 
see Supplemental Material, Tables 1 and 2, 
respectively (doi:10.1289/ehp.1002180)]. 
Some of these assays were considered to 
be directly related to the types of measures 
being collected in Tier 1 of the EDSP. Other 
assays against a number of NRs (38 other NR 
assays) and human and rat cytochrome 450s 
(36 XME/ADME assays) were included as 
potentially reflecting either direct (e.g., inhi-
bition of aromatase activity) or indirect (e.g., 
alterations in metabolism affecting synthe-
sis or degradation of endogenous hormones) 
effects on the endocrine system in vivo.

For all in vitro assays, we calculated a 
charac teristic effective concentration (micro-
molar) for each chemical–assay combination 
as described by Judson et al. (2010). These 
values were half-maximal activity concentra-
tions (AC50) for all assays except the multi-
plexed transcription factor assay, for which 
lowest effective concentrations (LECs) were 
calculated. Chemical–assay combinations that 
did not show activity below the highest con-
centration tested were labeled inactive. The 
complete data set, including AC50/LEC val-
ues for all chemical–assay measure ment pairs, 
is available from the U.S. EPA ToxCast web 
site (U.S. EPA 2010b).

The two chemical properties we used were 
a derived octanol/water partition coefficient 
(logP) and a predicted Caco-2 (cell membrane 
permeability assay) descriptor, which were 
intended to provide measures of bio availability 
(related to gastro intestinal absorption and per-
meability, respectively, as information that 
would not have been captured by the in vitro 
assays). The logP descriptor was calculated 
using LeadScope (Leadscope Inc., Columbus, 
OH). The predicted percent human absorp-
tion or Caco-2 descriptor was calculated 
using QikProp software (version 3.3.021; 
Schrödinger, New York, NY). In cases where 
QikProp was unable to calculate a value, an 
interpolated PCaco prediction was used: 

[(logP – 3)/3] – [(TPSA – 75)/75],

where TPSA is total polar surface area calcu-
lated using LeadScope.

The pathway information capitalized on 
data in external knowledge bases. As described 
by Judson et al. (2010), in vitro targets were 
mapped to human genes as an intermedi-
ate connection between assays and pathways. 
From these assay–gene–pathway connections, 
chemicals showing activity in at least five 
assays that mapped to a given pathway were 
assigned a “pathway perturbation score” as 
the minimum AC50/LEC value among the 
assays mapped to that pathway. The path-
ways used were selected for endocrine rele-
vance from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (Ogata et al. 1999), 
Ingenuity software (version 8.7; Ingenuity 
Systems Inc., Redwood City, CA), and the 
Online Mendelian Inheritance in Man reposi-
tory (National Center for Biotechnology 
Information 2010). The list of 27 spe-
cific pathway components used is given in 
Supplemental Material, Table 1 (doi:10.1289/
ehp.1002180), and details of each component 
(as stored in the ToxMiner database) are given 
in Supplemental Material, Table 2. The path-
way slices thus represent knowledge-based 
aggregations of individual assay results and 
serve to highlight bioactivity in cases where 
singular assay components demonstrated only 
low-to-moderate potency.

Rationale, notation, and definition of 
ToxPi. The framework for our profiling and 
prioritization system is detailed in Figure 1. 
For each chemical, ToxPi, a dimensionless 
index score, is calculated as a weighted com-
bination of all data sources that represents a 
formalized, rational integration of information 
from different domains. Visually, ToxPi is 
represented as component slices of a unit cir-
cle, with each slice representing one piece (or 
related pieces) of information (Figure 1). For 
each slice, distance from the origin (center) 
is proportional to the normalized value (e.g., 
assay potency or predicted bioavailability) of 
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the component data points composing that 
slice, and the width (in radians) indicates the 
relative weight of that slice in the overall ToxPi 
calculation. For example, in Figure 1, the slice 
representing ER assays for bisphenol A (BPA) 
extends farther from the origin than the cor-
responding slice for tebuthiuron, indicating 
that BPA is more potent across ER assays than 
is tebuthiuron. In the implementation pre-
sented here, all 10 slices are weighted equally 
in the overall ToxPi calculation, so the graphi-
cal width of all slices is equal to the angle, θ, 
formed by dividing 2π radians into 10 sec-
tions, or 2π/10 = π/5 radians = 36 degrees.

Alternative weighting schemes that differen-
tially emphasize individual ToxPi slices would 
therefore be graphically represented by differ-
ent angular widths corresponding to the weight 
of each slice. Figure 2 details some alternative 
implementations for hypothetical prioritiza-
tion tasks within the general ToxPi framework. 
In Figure 2A, additional domains have been 
included to represent knowledge from in vivo 
study results [e.g., from the Toxicity Reference 
Database (ToxRefDB) multigenerational stud-
ies (Martin et al. 2009b)] and exposure esti-
mates [e.g., from the Simple Exposure Tool 
(SimET) database (Health Canada 2008)]. 
This could represent a scheme for prioritization 
of chemicals with respect to particular health 
outcomes, such as liver carcinogenicity. In 
Figure 2B, additional chemical descriptors have 
been included. This could represent a collection 
of quantitative structure–activity relationship 
(QSAR) models or a specialized prioritization 
task such as developmental toxicity, wherein 
a targeted set of chemical properties related 
to placental transport would be important. 
In Figure 2C, the components shown are the 

same as in Figure 1, but the weights of the AR, 
ER, and TR slices have been increased. This 
reweighting could reflect a hypothesis that the 
in vitro assays measuring the AR/ER/TR axis 
should have greater influence for prioritizing 
endocrine disruptors.

Implementation of a profiling and priori-
tization methodology for endocrine disruptors. 
Here, we implement a ToxPi formulation that 
is specific to the task of endocrine prioritization 
by selecting data sources having putative endo-
crine relevance (see “Data sources,” above). The 
function developed for creating ToxPi pro-
files was based upon R code (R Development 
Core Team 2008) in the graphics, gdata, and 
lattice packages (R Foundation for Statistical 
Computing 2010), and the visualization is a 
modification of icono graphic displays called 
“spider” or “radar” plots (von Mayr 1877). The 
slices are defined in Figure 1, and the compo-
nents of each slice are given in Supplemental 
Material, Table 1 (doi:10.1289/ehp.1002180). 
Because of the screening aspect of this prioriti-
zation task, we have been inclusive with the set 
of assays and pathways chosen to ensure that 
we capture as many aspects of endocrinology 
as possible within the confines of the data. This 
inclusiveness in the screening is designed to 
minimize false negatives.

Figure 3 is a schematic that details 
how data are translated into ToxPi scores; 
Supplemental Material, Table 3 (doi:10.1289/
ehp.1002180) provides slice-wise scores for all 
chemicals. For this application, the chemical-
wise slice results are normalized to the inter-
val [0,1] by dividing each chemical result by 
the slice maximum, where results represent 
relative potency (in vitro assays), bioavailability 
(chemical properties), or perturbation score 

(pathways). Values closer to the unit score 
(equal to 1) translate to higher potency, higher 
predicted bioavailability, or greater pathway 
perturbation relative to all other chemicals. 
Conversely, values closer to the origin (equal 
to 0) translate to lower potency, lower bio-
availability, and lesser pathway perturbation 
across the corresponding domains. Values at 
zero (i.e., slices not extending at all from the 
origin) translate to “inactive/no activity.” As 
conveyed by the equal radial width of all slices 
in Figure 1, the slices are not differentially 
weighted for this implementation. However, 
by using a smaller number of targeted compo-
nents in the AR, ER, and TR slices, individual 
component assays within these slices exert a 
greater influence over that slice’s composite 
score than do individual assays from one of the 
larger slices for other NRs or XME/ADME. 

Figure 1. Definitions and notation for ToxPi. Weighted combinations of data were integrated for each 
chemical from multiple domains, with relative scores represented in ToxPi profiles composed of slices 
based on one or more components. Domains are basic data types represented by slices of a given color 
family: green, in vitro assay slices; orange, chemical properties; blue, pathways. Slices represent data 
from related assays, properties, or pathways, including AR, ER, TR, and seven other slices (see “Materials 
and Methods” for a full description). Ninety assays, two properties, and 27 pathways make up the 
119 components of this endocrine ToxPi (e.g., the ERα transcription factor assay is one of six components 
in the ER slice). The number of components in each slice is shown in parentheses. ToxPi profiles for bis-
phenol A and tebuthiuron are shown as examples of high- and low-ranked chemicals.

ToxPi = Σ wi * assayi + Σ wc * chemPropc + Σ wp * pathwayp

ToxPi = f(in vitro assays + chemical properties + pathways)
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Results
ToxPi profiles of the initial EDSP Tier 1 
chemicals. For a broad view of the EDSP 
chemicals in the context of the entire ToxCast 
phase I set, Supplemental Material, Figure 1 
(doi:10.1289/ehp.1002180) shows the ToxPi 
profiles for all chemicals, with the initial EDSP 
Tier 1 chemicals highlighted by red frames. 
The total colored area for each chemi cal sig-
nifies its overall ToxPi score. Closer inspec-
tion of individual chemical profiles reveals the 
reason(s) under lying overall scores. For exam-
ple, the known AR modulators vinclozolin 
(Martinovic et al. 2008) and linuron (Cook 
et al. 1993) have prominent AR slices (see 
Supplemental Material, Figure 1). Linuron, 
which has been shown to alter thyroid hor-
mone concentrations in vivo (O’Connor et al. 
2002), also showed some activity within the 
ToxPi TR slice. Inspection of the under lying 
ToxCast assay data reveals that linuron stimu-
lated expression of UGT1A1 (UDP glyco-
syltransferase 1 family, polypeptide A1) in 
human hepato cytes, which is consistent with 
emerging evidence that thyroid hormone con-
centrations are related to signaling events in 
the liver (Ding et al. 2006; O’Connor et al. 
2002). This result illustrates the value of cap-
turing information from a broad range of 
in vitro assays, probing a variety of mechanis-
tic pathways, when screening chemicals with 
hetero geneous modes of action.

In the dot plot shown in Supplemental 
Material, Figure 2 (doi:10.1289/ehp.1002180), 
the chemicals are sorted according to ToxPi, 
from highest score to the lowest, showing that 
the initial EDSP Tier 1 chemicals are distrib-
uted throughout the ToxPi-sorted distribu-
tion. This is not surprising because these were 
selected based solely upon exposure consider-
ations. The obvious advantage of the multi-
domain ToxPi is that expanding information 
coverage can fill holes in the screening net, 
thus increasing the likelihood of detecting true 
endocrine-active chemicals in the EDSP bat-
tery and augmenting efficiency by ensuring 
optimal use of screening and testing resources.

Exploring the distribution of reference 
chemicals within the ToxCast set. Until EDSP 
Tier 1 assay results are available, the best 
evaluation of our ToxPi implementation for 
endocrine prioritization is to assess the relative 
distribution of “reference” chemicals in the 
context of specific slices. Reference chemicals 
are those for which we have a substantial body 
of evidence in support of hypotheses regarding 
their toxicological activities. Figure 4 shows the 
individual ToxPi profiles for these reference 
chemicals and their positions along the sorted 
ToxPi distribution for all 309 chemicals. For 
assessing ToxPi, the list of reference chemicals 
should be spread throughout the score dis-
tribution to make sure that our ranking does 
not relegate known hazards to the bottom 

of the list. Methoxychlor and its metabolite 
2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloro-
ethane (HPTE) are among the chemicals 
with the highest ToxPi. These chemicals both 
have estrogenic effects (Miller et al. 2006), 
and in ToxCast data, the daughter metabolite 
(HPTE) demon strated higher potency across 
more assays than did its parent, consistent 
with evidence showing that the metabolism of 

methoxy chlor to HPTE results in higher ER 
affinity (Nimrod and Benson 1997). BPA is 
known to bind ER (Matthews et al. 2001) and 
is a known ER agonist (Chapin et al. 2008) 
that was also active across multiple ToxCast 
ER assays. However, BPA’s relatively high 
overall ToxPi score is also due to its activ-
ity relative to AR, other NRs, XME/ADME 
(including the aromatase biochemical HTS 

Figure 3. Translation of results into ToxPi score profiles. The concentration–response curves for each 
of the six assays in the ER slice are shown for three example chemicals. On each curve, the red asterisk 
represents the AC50 (potency) for assay “hits,” and flat blue lines indicate assays that are inactive for that 
chemical. For non assay slices, the same procedure is followed, with AC50 values replaced by particular 
chemical property values, pathway scores, and so forth. Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic 
acid; max, maximum; MXC, methoxychlor. 
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red boxes. These profiles have been translated into the distributional dot plot described above. 
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assay), and the endocrine-relevant pathway 
domains. In the literature, BPA has shown 
both estrogenic properties and the ability 
to act as an anti androgen and an aromatase 
inhibitor (Bonefeld-JØrgensen et al. 2007). 
Linuron, which is an anti androgen and has 
been associated with androgen-related repro-
ductive effects in rats, has a prominent AR slice 
in our data due to activity in the cell-based 
HTS assay for AR antagonism plus the bio-
chemical AR binding assay (Lambright et al. 
2000). Pyrimethanil, which has been shown 
to stimulate thyroid hormone metabolism 
(Hurley 1998), and rotenone, which is known 
to modulate thyroid hormone levels, demon-
strated activity within the TR slice [via the 
transcription factor reporter assay for THRa1 
(thyroid hormone receptor-α) and UGT1A1 
gene expression] and activity across multiple 
KEGG pathways, including thyroid cancer 
(Wang et al. 2004). Tebuthiuron showed 
almost no activity across endocrine-related 
assays and lacked effects in multi generational 
studies recorded in the ToxRefDB (Martin 
et al. 2009b), indicating that the relatively low 
ToxPi for this chemical is appropriate.

Assessing ToxPi stability. For any set of 
assays, false-positive results are a concern. 
Therefore, to assess the robustness of the ToxPi 
rankings (prioritization) presented here, we 
performed a simulation study testing sensitiv-
ity to spurious assay results. Simulations were 
designed to test the sensitivity of the ToxPi 
ranking for varying levels of false-positive 
results across all slices. For each simu la tion, 
we applied the given binomial false-positive 
rate to the observed component assay results. 
Figure 5 presents the mean ToxPi score of each 

chemical across 1,000 simulations each for 5%, 
10%, and 20% false-positive probability. These 
results show that, even in the face of relatively 
high (20%) error rates, the overall ToxPi score 
is relatively stable. We observed the same result 
in concurrent false-negative simulations (data 
not shown). More important, the relative pri-
ority ranking given by ToxPi (i.e., resorting the 
chemicals according to one of the simulated 
distributions) is reasonably robust: In situa-
tions where a chemical’s absolute rank changes, 
it tends to swap positions with a neighbor. 
This is in contrast to the large shifts in rela-
tive rank that would occur in a prioritization 
scheme reliant on singular pieces of informa-
tion, wherein individual errors would markedly 
shift the relative ranks. These simulation results 
demon strate a major strength of integrating 
multiple pieces of information to achieve stable 
prioritizations. Also, because ToxPi is intended 
to be used as an index for ranking (as opposed 
to an absolute threshold), adding or remov-
ing data from particular assays will not dra-
matically alter prioritization—given sufficient 
collections of component information. For 
most conceivable uses, absolute rankings will 
be less important than quantile regions along 
the entire ToxPi distribution (e.g., chemical 4 
and chemical 8 will still be in the top 5%).

Inspecting profiles within structurally 
homogeneous chemical classes. Inspecting 
profiles within related chemical classes is 
informative for assessing the utility of ToxPi 
applications. Supplemental Material, Figure 3 
(doi:10.1289/ehp.1002180) includes pro-
files for all 12 triazole fungicides present in 
ToxCast phase I. From the ToxPi profiles, 
this group of chemicals has similar logP 

values, similar Ingenuity pathway perturba-
tion scores, and similar scores on the XME/
ADME slice. However, the chemicals vary in 
the AR, ER, and TR slices, which agrees with 
evidence that individual triazoles differ widely 
with respect to reproductive toxicity observed 
in vivo (Goetz et al. 2007).

Discussion
ToxPi is an innovative and integrative 
approach to incorporating multi dimensional 
information into a flexible and transparent 
system for the prioritization of chemicals for 
future toxicological testing. Concurrent with 
the quantitative integration across domains 
of information, the profiles visually summa-
rize the under lying prioritization rationale by 
explicitly showing how each piece of informa-
tion contributes to the overall score. This ini-
tial implementation of the ToxPi framework 
indicates that an integrated approach, wherein 
multiple domains of toxicological knowledge 
are simultaneously incorporated into chem-
ical prioritization, can reasonably rank the 
ToxCast phase I chemicals for observed and 
potential endocrine-related toxicity. These 
rankings represent a systematic rationale for 
informing chemical prioritization decisions. 
Tangential to the main prioritization goal, 
ToxPi profiling in combination with task-
specific reference chemicals may also be useful 
for highlighting data needs relative to existing 
risk assessment information.

A salient advantage of the ToxPi frame-
work is its flexibility to incorporate informa-
tion from new domains and to be continuously 
updated with new chemical data. For example, 
beyond the 119 components we have included 
in this implementation, we would like to add 
additional components, such as QSAR predic-
tions for ER-binding potential (Schmieder 
et al. 2003). Ideally, future implementations 
could include an exposure domain. As stated 
above, the prioritization ranks presented here 
will differ from the EDSP Tier 1 prioritized 
list because we do not have consistent expo-
sure data for the entire chemical set. Despite 
the fact that simulations show ToxPi to be 
robust to component errors and resistant to 
spurious shifts in relative rank, inclusion of 
slices wherein a preponderance of chemicals 
have missing data could bias prioritizations 
toward those having that data.

The in vivo studies included in the current 
version of ToxRefDB may not be especially 
sensitive for some endocrine effects because 
most of the multi generation reproduc-
tive studies were conducted using older test 
guidelines with limited coverage of endocrine-
 sensitive pheno types (Stoker and Kavlock 
2010). In addition, a number of chemicals 
highly ranked by ToxPi either have no study 
data in ToxRefDB or have only weak asso-
ciations with endocrine-related end points. 

Figure 5. Assessment of the stability of ToxPi rankings in the presence of spurious assay results. The 
simulated probability of a spurious result on a given component assay ranges from 5% to 20%. Results for 
chemProp (orange) slices were held constant because they do not necessarily represent stochastic assays. 
Each data point shows the mean simulated ToxPi under each condition. For all simulation conditions, the 
chemicals are ordered according to the overall ToxPi score in the observed data (i.e., HPTE is line 1, BPA is 
line 2, and so forth for all 309 lines). 
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This indicates that ToxCast applications such 
as ToxPi data will not only support the pri-
oritization of chemicals yet to be tested for 
reproductive or endocrine effects but also 
help identify previously tested chemicals with 
unrecognized data gaps.

Besides data concerns, a number of statis-
tical avenues are yet to be explored. In cases 
where a definitive priority order of chemi-
cals is known a priori, weight optimization 
could be carried out using a Bayesian method. 
Such optimization may also be possible for 
a definitive reference chemical set, such as 
when Tier 1 EDSP data become available. In 
the future, particular ToxPi slices could also 
be used to represent complex components, 
such as predictive signatures developed as 
part of ToxCast or other multi variate mod-
els. Another use of the ToxPi approach is 
to evaluate the ToxCast assays as applied to 
endocrine prioritization or screening. Known 
data gaps in the current assay suite include 
biological targets in the hypothalamic– 
pituitary–gonadal axis, which are covered in 
the EDSP screening battery. Further ToxCast 
efforts will attempt to fill these data gaps for 
mechanisms or toxicity pathways that are not 
captured at present. Because it is currently 
impossible for any screening system to cover 
every conceivable toxicity mechanism in the 
face of species differences, biotransformation, 
the non existence of “perfect” assays, and other 
complicating issues, there will always be gaps 
in our screening capabilities. However, key 
pathways of endocrine disruption are relatively 
well defined, and a number of HTS assays are 
available to cover many of those pathways. 
Given the need to prioritize large numbers 
of chemicals for expensive animal-based bio-
assays, applying ToxCast results toward the 
identification of chemicals with high likeli-
hoods of inter acting with these pathways is a 
logical prioritization step. We hope that an 
integrated framework such as ToxPi will help 
bring together data from alternative, mutually 
complementary sources to inform and guide 
rational prioritization decisions.

Last, it is important to recognize the fluid 
nature of prioritization tasks. The optimal 
prioritization would take into account both 
a) measured or computed data that reflect 
inherent properties of chemicals in relation to 
biological systems, and b) regulatory consid-
erations that factor in human-activity–based 
chemical-use patterns and exposure metrics. 
Whereas the former type of data can be objec-
tively meas ured and anchored to biological 
systems and outcomes, the latter are dependent 
on production patterns, environmental fate 
and transport, product use, and human activ-
ities. Hence, a prioritization approach such 
as ToxPi, when implemented in the broadest 
sense, incorporates both objective chemical and 
biological data that are amenable to external 

validation, and other considerations such as 
use and exposure that can be validated only in 
terms of a pre defined subjective framework. 
These fundamentally different factors must be 
recognized and taken into account in any effort 
to validate implementations of the current pri-
oritization approach. For example, a metric 
of validation for the present implementation, 
which relies primarily on in vitro assay data 
and chemical properties for predicting toxic-
ity, would be in the context of actual toxicity 
measures. However, because the initial EDSP 
Tier 1 chemicals were chosen in large measure 
because of exposure considerations, a priori-
tized ranking based on toxicity measures alone 
would not be expected to coincide precisely.

Conclusions
The ToxPi profiles developed here provide 
graphical insight into the relative contribu-
tions of multiple data domains considered in 
this chemical profiling and prioritization. It is 
amenable to incorporating extant prioriti za-
tion schemes and relevant data from diverse 
sources, thereby facilitating meta-analysis 
across resources from the U.S. EPA and else-
where. Because ToxPi scores are intended for 
relative ranking, particular implementations 
of this framework can be continually updated 
with new chemicals and future data. A frame-
work amenable to data growth will be vital 
as the body of chemical information grows 
exponentially with efforts such as REACH 
(Registration, Evaluation, Authorisation and 
Restriction of Chemical substances) in the 
European Union (EC 1907/2006), subsequent 
phases of the U.S. EPA’s ToxCast program, 
and the inclusion of information as it becomes 
available from the EDSP test batteries.
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